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A UNIVERSAL SEQUENCE OF PERIOD-DOUBLINfi BIFURCATIONS 
OF THE FORCED OSCILLATIONS OF A PENDULUM * 

V.I. GULYAYEV, A.L. ZUBRITSKAYA and V.L. KOSHKIN 

One of the most typical modes of chaotization in deterministic systems 
occurs when variation of the parameter characterizing the intensity of a 
disturbance takes a dynamical system through a sequence of 
period-doubling bifurcations from a regular to a stochastic mode of 
behaviour. The transition occurs in regions of phase space 
characterized by a strong local instability and obeys the law of 
universality recently discovered by Feigenbaum /i/. 

In this paper continuation with respect to a parameter and methods of branching theory 
/3/ are used in combination to construct a sequence of period-doubling bifurcations for the 
forced oscillations of a conservative pendulum. This sequence is shown to possess the 
universality property. 

I. We shall be concerned in this paper with the evolution and bifurcation of periodic 
solutions of the equation of forced oscillations of a pendulum 

x " + ~  s in  x = ~ sin ~ t  ( t . t )  

when the parameter k is varied and with analysis of the stability of these solutions. Suppose 
that at some parameter value ~ = ~(0) the pendulum oscillates with period T = 2~/~. The 
corresponding T-periodic solution ("T-solution") of Eq.(l.l) satisfies the conditions 

X(o) (0) = X<o) (T), ~o)" (0) = ~ "  (T) ( t .2)  

The  s o l u t i o n s  o f  E q . ( 1 . 1 )  a r e  c o n t i n u o u s  f u n c t i o n s  o f  t h e  i n i t i a l  c o n d i t i o n s  and  t h e  
parameter ~, so that the T-periodicity conditions can be written 

Xo = x (Xo, Xo', X, T) ( t .3)  

Zo" =£(Xo ,  Xo', ~, T) (Xo=Z (0)) 

X(o)o" 
We now vary both sides of (1.3) in the neighbourhood of the state 

8x(o~o = ~ 8X(o)o + ~ ~Xio)o _ az(r) _ --/f-- 8Xco) 

• • a z ' ( T )  o - , ' 

(Z~o)o = X(o) (0))  

2% =ffi ~(o), Xo ~ X(o)o, Xo" 

(1.4) 

I n t r o d u c i n g  t h e  n o t a t i o n  0x (t)/0x0 = Yx (t), Ox (t)lOx o" = y ,  (t), a x  (t)/O~, = y~ (t), 
Yx (T), y~ (T), y~ (T) f r o m  t h e  s o l u t i o n s  o f  t h e  a p p r o p r i a t e  v a r i a t i o n a l  e q u a t i o n s  

y , " + k ~ y ,  c o s x  = 0 ,  Ylo = t ,  Y,o" = 0 

Y 2 " ' + ~ Y 2 C ° S X  = 0 ,  Y , 0 = 0 ,  Y~o '=  t 

we determine 

(i 5) 
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~X(o)o 

y~'" -~ k~y~cosx : sin ~t, Y~0 : 0, Y~0" : 0 (|.6) 

Specifying the value of 61~0~, we obtain the variations of the initial conditions bx(0)0, 

as a solution of the system of linear equations 

[y, (T) - -  1] 6X(o)o -5 y~ (T) 6x~o)o" = --y~ (T) 6t(o) (l 7) 

Y*" (T) 6X(o)o -5 [y~" (T) - -  t1 6X~o)o" = --y~" (T) 6~o) 

The solution of the Cauchy problem for Eq. (i.i) with initial conditions x(,)0 : x(0)0 ~-~x(0)0, 

x(~m" = x(0)0" -5 ~x(0)0" with l(~) = ~(0) ~- ~k(0) will satisfy the periodicity conditions (1.3) with 
a (residual) error 

1 x(l~o = x(~) (T) + r(o), ~(~)o = z~l) (r) + r~o ~ 

of the same order as the terms of the Taylor series omitted in (1.4). The error in the 
initial conditions is adjusted by use of the Newton-Kantorovich method, and then (k is the 
number of iterations) 

Z(1)O = X(O)O "4- ~X(0)0 3C ~ ~Xr(~)O 
~0  

6Xr(~) o y i ( T ) - - t  y~(T)  -~ rl~ I 

~z,(~)o ~" (T) ~" (T) -- 1 r~) 

The process is now continued, using x(1)0, x(1)0" as a generating solution, putting k : ~(I) 
and subjecting ~ to a further variation, to find T-solutions for ~ = ~(~) = l(~) -5 ~I(i); and 
so on. 

The stability of these periodic solutions, and conditions for their existence and unique- 
ness in the relevant neighbourhood, may be investigated relying on Floquet's Theorem, by 
analysing the multipliers pl of the monodromy matrix /4/ 

Y ( T ) =  y , ' (T )  yz ' (T)~ (l  . s)  

A period-doubling bifurcation occurs in a conservative second-order system in states for 
which both multipliers of the matrix (1.8) are equal to P1.~ : --|. Once this state is 
reached, the construction goes on with period 2T. In this state 

det  I ] Y ( 2 T ) - - E I [  = 0 

and therefore higher-order terms must be retained when using the representation (1.4) (Y~, Y2, 
.... Yz~ are defined at t : 2T):  

6Xo = yl6xo ~- ya6Xo" -5 y7 6~ ~- (1.9) 
1/2y n (~xo)' ~- 1/2y~2 (~Xo') 2 -5 1/2y~,, ((5~) 2 -~- 

Y126xoSxo" -5 y,~(~XoS;~ -5 Y2~ 6Xo" 5;~ + . . . 
6Xo" = y,'6Xo -5 yz'~X O" ~- y~'62~ -5 

Ylz'~xoSxo" -5 YI~" 6Xo6~ + Y2;'6Xo'61 -5 • • • 

The coefficients of the higher-order terms in Eqs. (1.9) are the derivatives of the func- 
tions Y~, Y2, Y~ with respect to x0, x 0" and ~ at t = 2T. A subscript 1 indicates dif- 
ferentiation with respect to z 0, a subscript 2 with respect to x0" , and subscript ~ with 
respect to ~. To determine these coefficients we differentiate the variational Eqs. (1.5), 
(1.6) term by term with respect to the initial conditions and the parameter, obtaining the 
following system of equations: 

y ~  + k2y~ cos x = k2y~ 2 s in  x, Y~o = 0, y~ ,  = 0 ( l . i 0 )  

y ~ + k 2 y ~ l ~ c o s x = k 2 y n y ~ s l n x ,  Y ~ o = 0 ,  Y~o = 0  

( ~ - - i ,  2 , ~ ,  q : t , 2 ,  ~ = 2 , ~ , ;  ~=/=~)  

The system of branching Eqs. (1.8) /3/ with coefficients Yl (2T), Y2 (2T) .... , ~(2T) calculated 
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from (1.5), (1.6) and (i.i0) and prescribed 6~ is solved by separation of roots with subsequent 
Newton-Kantorovich correction. After that, the solution can be extended along each branch by 
the continuation with respect to the parameter. If system (1.9) has no solutions or if there 
are multiple roots, further terms of the expansion must be included in the branching equations 
and the computations repeated. 

Extending a 2T-solution of Eq.(l.l) as a function of ~, we find a bifurcation value of 
corresponding to the next period doubling of the forced oscillations; and so on. 

This method of constructing a sequence of period-doubling bifurcations for oscillations 
of a mechanical system, followed by stability analysis of the 2"T-solutions of Eq.(l.l) thus 
obtained, is specially designed for high-speed computer application and high-precision com- 
puting procedures. 

A few words about the main features of numerical implementation of our method. An ALGOL 
program was written to construct a bifurcation "tree" of periodic solutions of Eq.(l.l) as 
is varied. All computations are done with double precision. Eqs.(l.l), (1.5) and (1.6), and 
at branch points also Eqs.(l.9), were integrated 3ointly by the Everhart method /5/ with high 
precision (-12-13 accurate digits at the end of a period). The continuation step 8~(m ) was 
chosen so that after two or three Newton-Kantorovich iterations the following conditions were 
satisfied: 

r(1) ( ~ ) l < p m a x t l x { ~ > ( t ) l  , I r ~ ) l < ~ m a x t l x { k ) ( t ) l  ( g ~ l O - ~ O )  

In the neighbourhood of the bifurcation values of ~ the accuracy of the solution was 
improved by the dichotomy method. 

2. Our construction of a sequence of period-doubling bifurcations for the forced oscil- 
lations of a pendulum was tried out at k 2 = I, ~ = 1.3. As generating T-solution (T=2~/~) 
we took the stable equilibrium state ~(0) = 0, z~) 0 = 0, z(0 m = 0. 

An increase in the intensity of the applied disturbance ~>~(0) induced an increase in 

increase in amplitude and a decrease in the frequency k*<k of free non-linear oscillations, 
since the amplitude-frequency characteristic of the pendulum is smooth. Thus, if the fre- 
quency of the applied disturbance is taken to be ~>k, the system retreats from non-linear 
resonance as ~ increases. 

We will now trace the stability of T-periodic oscillations as ~ increases. On the 
branch of T-periodic oscillations corresponding to the interval ~(0)~<I.725... complex- 

conjugate multipliers lie on the unit circle. Such oscillations are therefore stable. They 
have a phase portrait of the type shown in Fig.la. 
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At ~ =  ~(z) (see the table) the multipliers assumed a value p, = ps =--i, indicating 
that bifurcation of the solution is accompanied by period doubling. The branch of 2T-solutions 
branching from this state turned out to be unstable, since one of the multipliers computed at 
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period 2T lay outside the unit circle. 

) (~) 6(~) ~0 

1 
l '  

2 
3 
4 
5 
6 
7 
8 

t,725 
1.77095912802 
1.72462398665 
1.718i19328404 
i.7173274t15897 
1.71723646041822 
1,71722602293480 
1,71722482610252 
i,71722468886838 

7,i2337865 
8.2t38i505 
8,70705458 
8.71389854 
8,72092405 
8.72109726 

0 
|,3120t 
t,73337025268 
1,82946173268 
1,834t8944574 
1.83339655541 
1,83354848610 
1.8335921t395 
1,83359422288 

2.26561727272 
1.86039918519 
1.53906612857 
1.484i5882553 
1.48435587447 
1 48493217056 
1.48490249t3t 
1.48488615372 
1,48488506144 

We nevertheless traced the further evolution of the system as the amplitude of the 
applied disturbance was varied. The branch of 2T-solutions remains unstable until ~ becomes 
equal to ~0') At l=l(1') there is a limit point on this branch, at which Pl : P2 = I. 
Continuation of the branch of 2T-solutions beyond the limit point is accompanied by a 
decrease in ~ to the value ~(2)~ in the interval ~o')~(2) the corresponding 2T- 
periodic oscillations of the pendulum are stable. At ~ = ~(2) the stable 2T-solution, whose 
phase portrait is shown in Fig.lb, undergoes a period doubling bifurcation, generating a 
stable 4T-solution. This branch of 4T-solutions is stable in the interval l(2)~(a). The 
parameter value ~(s) corresponds to the next period doubling bifurcation and the appearance 
of a stable 8T-solution; and so on. 

The eight first period-doubling bifurcations were found for this particular conservative 
pendulum. The bifurcation values of the parameter ~(~) (~ = 1,2, . , 8) are listed in the 
table. Also listed are the initial conditions of the 2(~-~)T-solutions at the bifurcation 
points. Note that in all intervals ~-i}~(~) (except in the case i = 2) the correspond. 
ing 2--I)T -periodic oscillations of the pendulum are stable. 

The phase tra3ectories of T- to 8T-solutions in the right half-plane corresponding to 
bifurcation values U ~) (~ = 1.2,3,4) are shown in Fig.la-d. Fig.2 illustrates the branching 
tree in the right half-plane for Eq.(l.l), showing a section of the space x(t).x (t),k by the 
plane x'(t) = 0 The phase portraits and branching tree are symmetrical about the axis 0x. 
Branches corresponding to stable 20-1)T-solutions are indicated by the solid curves, and 
unstable ones by the dashed curves. It can be seen from the phase portraits of the computed 
2'~-I) T-solutions that each further period-doubling bifurcation splits the phase trajectory of 
the system and reduces the regularity of the motion. However, as ~ increases the distances 
between ad3acent sections of the phase tra3ectories decrease rapidly and by ~>5 they are 
hardly distinguishable. In this connection we note that the phase tra3ectory of the 128T-sol- 
ution cuts the z axis at 256 points. 

Analysis of the bifurcation values ~) shows that the sequence converges to a certain 
point of accumulation ~(~) /6/ according to a law close to that of a geometric progression 
with ratio 

and the exponent 6(*) itself converges as i increases to Feigenbaum's universal conservative 
constant 6 = 8.7210972 .... /7/, obtained for two-dimensional Hamiltonian maps. It is typical 
that as early as ~ = 6 ~0) is identical with ~ up to the eighth significant digit (table). 

The high rate of convergence 6 of the bifurcation values ~ to the accumulation point 
~(~) implies that even slight variations in the intensity of the applied disturbance cause a 
rapid decrease in the regularity of the motion and produce highly involved phase tra3ectories. 
A glance at Fig.2 reveals the cascade-like nature of the process. 

Using the constant 6 /7/, one can determine the approximate value of ~) at which the 
oscillations of the pendulum become chaotic. Thus, at ~ = 7, 

~ ( ~ ) ~ ( ' ) - - ( ~ ( ' ) - - ~ ( ~ + ~ ) )  ~ / ( ~ - - ~ )  = ~.71722467109446 

Harmonic analysis of the computed periodic solutions produces the Fourier spectra shown 
in Fig.3a-c for the 2<~-~)T -solutions of Eq.(l.l) at ~ = 1,2,4, respectively. A charcteristic 
feature of the spectra is the appearance of subharmonics at frequencies ~/2 ~ and multiples 
of their odd harmonics at the ~-th period doubling bifurcation. As ~ is increased, the 
amplitude of each harmonic increases up to a certain saturation level, which in turn decreases 
as i increases. As ~-+ oo the spectrum becomes continuous, indicating the chaotic nature of 
the oscillations. 

Hence, our study has confirmed the possibility that the transition to chaos in the 
oscillations of a pendulum occurs by way of a Feigenbaum-universal sequence of period-doubling 
bifurcations. 
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LIMIT CYCLES AND CHAOS IN EQUATIONS OF THE PENDULUM TYPE * 

A.D. MOROZOV 

It is proved that for sufficiently small e the equation 

z'" -5 sm z = 8z' cos n z ,  n E N (0.t) 

where e is a parameter, has exactly n--I coarse limit cycles (l.c.'s) 
in the region of oscillatory motions and no l.c.'s in the region of rotary 
motions (i.e., l.c.'s going round the phase cylinder). This result is 
used to study an equation of type (0.i) with time-periodic term on the 
right. The role of l.c.'s in the formation of quasi-attractors (q.a.'s) 
is demonstrated. A computer-generated description is given of the 
process by which q.a.'s with developed chaos are formed (for n= 3). 

I. Statement of the pPoblem. Mai~ ~esuZts. we consider equations of the form 

x'" + A (x) = e / ( x ,  x ' ,  vt ;  e) ( t .1 )  

where ,4 is a 2,-periodic function of X and f a periodic function of z and ~ = vt with the 
same period; 8, ~ are parameters. Equations of this kind govern the motions of various pendu- 
lums. Among other applications we mention the problem of the structure of resonance zones in 
non-conservative time-periodic systems 

du __ BH(u,v) dv __ OH(u,v) 
d~ 0------V--- ~- ~ R  (u, ~', ~), d~ du + ttG (u,  v, T) ( t .2 )  

where ~ is a small parameter. As shown in /i, 2/, this problem involves investigating an 
equation of the form (i.i) with a small parameter e depending on ~. In addition, / = o (x) x" + 
O (e), where o (x) is defined by the divergence of the vector field of system (1.2). 

We set A (x) = sin x and consider, first of all, the case in which 8 is a small parameter 
Eq.(l.l) has been studied in this case /3/ for a special form of the function f. A more 
general setting was considered in /2/. It has been observed that an important role in the 
study of Eq.(l.l) is played by the l.c.'s of the autonomous equation 

x " +  s l n x  = e l . ( x , ~ ) ,  Io = < l ( x , x ' , ~ ; 0 ) > ~  ( t .3 )  
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